PID-shunting: Understanding from nanoscale to module level

Volker Naumann¹, Dominik Lausch¹, Klemens Ilse¹,

Otwin Breitenstein², Jan Bauer², Stephan Großer¹, J. Bagdahn¹, Christian Hagendorf¹

¹ Fraunhofer Center for Silicon Photovoltaics CSP, Walter-Hülse-Str. 1, 06120 Halle, Germany
 ² Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany

Outline

- Introduction: Potential-induced degradation of shunting type (PID-s)
- PID test for unlaminated solar cells and encapsulants
- The nature of PID-shunts
 - Local shunts
 - High resolution defect analysis
- Voltage divider model for solar module encapsulation
 - Measurement of leakage currents and voltage distribution
 - Explanation of approaches for PID prevention

Potential-induced degradation of shunting type (PID-s)

- Large potential between front glass surface and solar cells
 → leakage current (cations, electrons) [1, 2]
- Massive reduction of the parallel resistance = shunting $\rightarrow \underline{PID-s}$
- Great efforts to achieve a test standard require a basic understanding

Relative power output after PID tests at 95 modules

S. Dietrich et al., Experiences on PID testing of PV modules in 2012, NREL PV Module Reliability Workshop 2013

Electroluminescence imaging reveals PID-s

P. Hacke et al., Proc. of 25th EU-PVSEC, Valencia, Spain, 2010
 S. Pingel et al., Proc. of 35th IEEE PVSC, Honolulu, USA, 2010

© Fraunhofer-Center für Silizium-Photovoltaik CSP

PID test for unlaminated solar cells and encapsulants

- PID test procedure for solar cells and module components (glass, polymer sheets)
- Use of standard encapsulation materials
- PID-testing without manufacturing of mini modules, no climate chamber necessary
- In-situ recording of R_p
- Patent pending
- Commercially available (Freiberg Instruments/Germany)
- \rightarrow Fast and inexpensive quality check for cells
- \rightarrow Flexible tool for R&D (cells, encapsulants)

EL image of a multicrystalline Si solar cell after PID test on an area of 4x4 cm² (shunted region)

Comparison of PID test methods

	Time to result	Closeness to reality	Varia- bility	Control of test	Cost per test (incl. equipment)
In-field testing					
- 'intelligent' HV source		++	0	0	
 permanent HV 	_	+	0	+	-
Climate chamber					
- Standard modules	0	+	+	++	
- Mini modules	+	Ο	+	++	0
Corona test					
- of mini modules	+	0	+	-	+
- unlaminated solar cells	++		—	-	++
PIDcon cell test	+	0	+	+	++

Physical nature of PID-shunts

Physical nature of PID-shunts: local shunts

- PID-shunted regions consist of high numbers of local shunts
- Accumulations of Na at the SiN_x-Si interface correlate with shunt positions

Lock-in EBIC system by point electronic [1] V. Naumann et al., Solar Energy Materials and Solar Cells Vol. 120 (2014), 383-389

Physical nature of PID-shunts: cross section

TEM image of a stacking fault + EDX mapping:

- PID-shunt = 2D crystal defect ("stacking fault") in Si, decorated with Na^[1]
- Corona test \rightarrow Na comes from the surface of the cell, not from the glass
- Assumption: voltage across SiN_x antireflective layer critical for Na⁺ ion drift
 [1] V. Naumann et al., Solar Energy Materials and Solar Cells Vol. 120 (2014), 383-389

🗾 Fraunhofer

Voltage divider model for PID

Voltage divider model for PID on module level

 Critical parameter for resistance against PID: voltage across SiN_x layer (V_{SiN})

steady state (after charging of all capacitors):

$$V_{SiN} = I_{leak} \cdot R_{SiN}$$

$$I_{leak} = \frac{V_{ext}}{R_{glass} + R_{poly} + R_{SiN}}$$

$$V_{SiN} = \frac{R_{SiN}}{R_{glass} + R_{poly} + R_{SiN}} V_{ext}$$

[1] V. Naumann et al.: On the discrepancy between leakage currents and potential-induced degradation of crystalline silicon modules, *Proc.* 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp. 2994-2997

10

🗾 Fraunhofer

Voltage divider model for PID on module level

 Critical parameter for resistance against PID: voltage across SiN_x layer (V_{SiN})

steady state (after charging of all capacitors):

$$V_{SiN} = I_{leak} \cdot R_{SiN}$$

$$I_{leak} = \frac{V_{ext}}{R_{glass} + R_{poly} + R_{SiN}}$$

$$V_{SiN} = \frac{R_{SiN}}{R_{glass} + R_{poly} + R_{SiN}} V_{ext}$$

[1] V. Naumann et al.: On the discrepancy between leakage currents and potential-induced degradation of crystalline silicon modules, *Proc.* 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp. 2994-2997

11

🗾 Fraunhofer

Voltage divider model Case 1: control of the leakage current $V_{SiN} = I_{leak} \cdot R_{SiN}$

- Reduced leakage current avoids PID-s
- Can be achieved through high resistance of encapsulation glass or polymer

© Fraunhofer-Center für Silizium-Photovoltaik CSP

💹 Fraunhofer

Voltage divider model

Case 2: control of the SiN_x properties $V_{SiN} = I_{leak} \cdot R_{SiN}$

- Properties of SiN_x layer have no influence on the leakage current, but on the PID-s sensitivity
- Low resistivity of SiN_x at fixed leakage current gives reduced V_{SiN} and therefore less Na⁺ ion drift across the SiN_x layer → avoids PID-s

[1] V. Naumann et al., Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp. 2994-2997

© Fraunhofer-Center für Silizium-Photovoltaik CSP

Approaches for preventing PID(-s)	Explanation with voltage divider model R_{SiN}		
System level	$\frac{V_{SiN} - R_{glass} + R_{poly} + R_{SiN}}{R_{glass} + R_{poly} + R_{SiN}}$		
Avoid high negative bias of cells in modules [1]	$V_{ext} \rightarrow 0 \ \rightarrow I_{leak} \rightarrow 0 \ \rightarrow V_{SiN} \rightarrow 0$		
Module level			
Front glass with less mobile ions (quartz glass) [2]	$R_{glass} \uparrow \rightarrow I_{leak} \downarrow \rightarrow V_{SiN} \downarrow$		
Encapsulants with reduced mobility of ions [1, 2]	$R_{poly} \uparrow \rightarrow I_{leak} \downarrow \rightarrow V_{SiN} \downarrow$		
<u>Cell level</u>			
 Low potential across SiN_x layer through increased conductivity (refractive index ↑ [1, 3], doping [4]) 	$ \begin{array}{l} R_{\text{SiN}} << R_{\text{glass}} + R_{\text{poly}} , \\ R_{\text{glass}} + R_{\text{poly}} = \text{const.} \rightarrow \\ I_{\text{leak}} = \text{const.}, R_{\text{SiN}} \rightarrow 0 \rightarrow V_{\text{SiN}} \rightarrow 0 \end{array} $		
 Modification of the Si surface before SiN_x deposition [5] 	presumably not electrical effect		

- [1] S. Pingel et al., in: Proc. 35th IEEE Photovoltaic Specialists Conference, USA, 2010, pp. 2817–2822.
- [2] P. Hacke et al., in: Proceedings 37th IEEE PVSC, Seattle, WA, USA, 2011, pp. 814–820.
- [3] H. Nagel et al., in: Proceedings 26th EUPVSEC, Hamburg, Germany, 2011, pp. 3107–3112.
- [4] Patent DE 10.2010.017.461.A1 2011.12.22.
- [5] H. Mehlich et al., in: Proceedings 27th EUPVSEC, Frankfurt, Germany, 2012, pp. 3411–3413.

Conclusion

Conclusion:

- PID cell test provides economic PID testing of solar cells and encapsulants
- PID-s: stacking faults in Si become conductive by decoration with Na
- PID degradation rate and final condition depend on voltage in the SiN_x layer, which is a function of leakage current and SiN_x layer's electronic conductivity

Conclusion

Conclusion:

- PID cell test provides economic PID testing of solar cells and encapsulants
- PID-s: stacking faults in Si become conductive by decoration with Na
- PID degradation rate and final condition depend on voltage in the SiN, layer, which is a function of leakage current and SiN_x layer's electronic conductivity

Acknowledgements:

16

This work is partly supported by the BMBF project "xµ-Module" (03SF0400A) within Spitzencluster Solarvalley Mitteldeutschland.

The ToF-SIMS/EBIC correlation and first TEM investigations have been conducted under the project "FutureFab" (13N11446) within Innovationsallianz Photovoltaik.

Bundesministerium

GEFÖRDERT VOM

für Umwelt, Naturschutz und Reaktorsicherheit

Hanwha Q Cells is gratefully acknowledged for supply of non-standard monocrystalline solar cells.

